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On the construction of approximate solutions for a 
multidimensional nonlinear heat equation 

M Eulee, N Euler and A Kohler 
Department of Applied Mathematics, Rand Afrikaans University, Po Box 524, Auckland patk 
2006. South Africa 
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AbstracL We study three methods, based on continuous symmetries. to find approximate 
solutions for the multidimensional nonlinear heat equalion aupm + Au = au" + 6f (U), where 
a and n are arbitrary real constam. f is a smooth fundion. and 0 c E cc 1. 

1. Introduction 

Recently, we studied approximate symmetries for a Landau-Ginzburg equation (Euler er 
d 1992). Within this approach one can obtain approximate solutions for multidimensional 
partial differential equations with a small parameter (Shul'ga 1987, Fushchich and Shtelen 
1989). Moreover, Baikov er a1 (1989) introduced a different definition of approximate 
symmetries in order to obtain exact solutions for such equations. In this paper we attempt 
to develop the method of approximate solutions in a study of the following multidimensional 
nonlinear heat equation 

au - + Au = au" + E ~ ( I L )  
axo 

where a and n are real constants, 0 < E < 1, f is a smooth function, and A = 
E;=, a2u/axf. A classification of f in (1) for an approximate scaling symmetry and 
an approximate Lie-Biicklund symmetry is performed. A more general concept of 
approximation together with its compatibility problem is also studied. Approximate 
solutions are calculated. Finally we consider the method of Baikov el  a1 (1989) for 
approximate scaling invariance. 

2. Approximate d i n g  invariance 

Let us first consider the concept of approximate systems for the construction of approximate 
solutions. Here an approximate system is obtained by representing the solution U of a 
(nonhear) partial differential equation in the form 

U = U0 f EUl + O(E2) (2) 

t On leave from the Institute of Mathematics. Kiev, Ukraine. 
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where uj (j = 0,l. . . .) are smooth functions of the independent variables. After substituting 
and equating to zero the coefficients of zero and different powers of E,  we obtain systems 
of partial differential equations. 

With the representation (2), a first-order approximation of (1) is given by the following 
system of partial differential equations: 

Quation (1) and system (3) admit the translation and rotation symmetry vector fields 

a a a 
axi axk ax, - and x ~ - - x x -  

wherei=O ,..., 3and j # k = l .  ..., 3. 
We consider the following scaling symmetry generator for system (3): 

where 11 is an arbitrary function of its arguments. For 

2Cl n=l-- 
cz 

( c ~  # 0) it follows that must take the form 

I ~ I @ O , U I )  =kiuo+kzui +k3 (6) 

where C I ,  cz, kl, k2, k3 E R. 

Theorem I .  The function f in (1). such that Z is a first-order approximate symmetry for 
(l), is given by the following three cases: 

(i) For kz # 0 and kz # cz we obtain 

(ii) For kz = 0 we obtain 

(iii) For kz = cz we obtain 

In the above given cases c E 'R. 
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To prove this theorem we make use of the Lie derivative for the invariance condition 
of system (3) with respect to the Lie symmetry (4) whereby the functions (7), (8) and (9) 
follow. For more details on Lie symmetry calculations we refer the reader to Ovsiannikov 
(1982), Olver (1986), Bluman and Kumei (1989). Fushchich et a1 (1993). and Euler and 
Steeb (1992). 

We now construct a symmetry ansatz from the scaling symmetry for the function in 
case (i), i.e. we have to solve the Lagrange system 

:= d r  b o  dwi dw2 b 3  duo dui - - --e 
2~1x0 cixi ~ 1 x 2  ~1x3 czuo kiuo+kzui +k3 

where r is a group parameter. The following ansatz is obtained: 

where 

System (3) reduces to 

We first have to solve p~ from the nonlinear equation (1 1) and then the linear equation (12) 
for QI . If we consider 400 as a function of 01, 02, or y we obtain equations of the form 

This equation was studied by Euler etal (1989) and Duarte etat (1991). General conditions 
on the functions hl, h2 and h3 were constructed so that (13) could be transformed, by an 
invertible point transformation, to the integrable equation d2X/dTZ+X" = 0. The Painlev6 
test and the existence of a Lie point symmetry was also studied. By using the results 
from these articles we found that the ordinary differential equations which follow from 
(1 1) cannot be transformed to an integrable second-order equation: they have no Lie point 
symmetries, and they do not pass the Painlev6 test for any n 2 2. For more information on 
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the Painlevt test and invertible-point transformations we refer the reader to Steeb and Euler 
(1988) and Steeb (1993). Note that there is a close correspondence between the existence 
of Lie symmetries and the Painlev6 property (Euler et al 1993). 

In order to find exact solutions for from (11) we consider the ansatz 

where a and B are real constants that must be determined. The following first-order 
approximate solutions for U are obtained. 

(i) Let % = p&1) and 11 = pl (o1) .  It follows that 

where kz = 2cl, n # -1, and 

A first-order approximate solution U = u g  +CUI, for the equation 

follows from (10) and (15). 
(U) Let vo = (o0(oz) and (01 = p1 (%). It follows that 

where n = 2, 01  = 1, k2 = -4c1, and E E 'R. A first-order approximate solution, 
U = uo + E U ~ ,  for the equation 

au - + Au = auz + E (-*U' + 
axo cz - kz 

follows from (IO) and (17). 

3. Approximate in terms of % 

We now consider the problem of finding a first-order approximate solution with the 
representation 
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where g is an arbitray smooth function. System (3) now'takes the form 

From the splitting condition of (21) we introduce a function A(u0) together with the 
compatibility problem 

3 

--i AUO = au;. 

In order to find compatible solutions for system (22) we investigate the symmetry of system 
(22). 

Theorem 2. The infinitesimal functions c j  and q, in the Lie symmetry generator 

(ii) For an arbitrary real constant n and arbitrary function A(u0) it follows that 

e o = &  

52 = - C I Z X I  + ~23x3 + d2 

q = 0. 

81 = c 1 2 ~ 2  + ~13x3 + di 

b - - C I ~ X I  - ~23x2 + 4 

(iii) For n = 1, A(u0) = 0 and U # 0 it follows that 

t o  = 2CWXO + 4 
h 

CCQXI + ~12x2 + ~13x3 + di 

$3 = ~00x3 - c13xI - CZ3X2  i d3 CWXZ - C 1 z X I  + C23X3 + dz 

17 = ( k x ~ o  + bbo. 

(iv) For n = 1 and A(u0) = U: it follows that 

t o  = do 

h = - C I Z X I  t cz3x3 + dz 
17 = buo. 

81 = c1zxz + ~ 1 3 x 3  + dl 

f3 = - C I ~ X I  - cvxz t d3 

Here b, cij, dj E R ( i ,  j = 0,. . . ,3).  The proof follows from the invariance conditions. 
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As an example of constructing compatible solutions for system (22) we consider the 
linear combination of the rotation in X I  and xz with the translation in y, i.e. 

a a a 
axI ax2 ax3 

xz- -XI- +a- 

where (Y E R. This symmetry is valid for arbitrary tt and arbitrary function A(u0). By 
solving the associated Lagrange system we obtain the symmetry ansatz 

U 0  = P(W. U23 Y) 

W = X ~  oz=xf+x ,2  y = x 3 + a s i n - '  x2 (23) W' 
By using (23), system (22) reduces to 

Let us consider Q = ~ ( q ) .  System (24) reduces to 

d2a 4 4q-  +4- - arp" = 0 do2 & 

With ansatz (14), where (Y = -1 and B = 1/(1 - n), equation (25) takes the following 
form: 

1 +- dz2 n - 1 dZ (a - 1)' 
d2$ 2 d@ 

This equation has no Lie symmetries, no point transformation to an integrable equation 
exists, nor does it pass the Painlev6 test for any n > 2. A constant solution for arbitrary n 
is given by 

From (14) together with (26) we obtain 

A solution of (22) then follows from (23) and (27). Using (27). equation (21) reduces to 
the linear equation 
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First approximate solutions of (1) can now be constructed by solving (28) for a given 
function f. For example 

is a first-order approximate solution for the equation 

au 
- + A u = a u " + &  cosu-nu-'cosu-sinu 
axo 

Another example of a compatible solution for system (22) is obtained by considering 

0 = a . z := OLlXl+ a2xz + u3x3 (31) 

the space translation symmetries which provides the ansatz 

U0 = p(0) 

with aj ( i  = 1, . . . ,3) arbitrary constants and a' # 0. System (22) now takes the form 

Let us consider n = 0 in (1) for the nonlinear functions given by theorem 1. For the 
function (7) it follows that 

a 
2.22 A ( 9 )  = 209 uo = --(a. 1)' 

is a solution of system (32), so that 

(33) 

Here ZI and & are arbitrary real constants. Thus a firsborder approximate solution for the 
equation 

is given by 

where uo is given by (33). In the same way as above, whereby we consider (21) together 
with (22) and the function (S), we obtain a first-order approximate solution for the equation 

au 

axo 
- + A u = a + &  -+cu-' 

as 

Here E$,  & are arbitrary constants and uo is given by (33). Note that n = 0 is not valid for 
the function (9). 
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4. An approximate LiP-BffcMund generator 

By considering Lie-Backlurid generators for system (3), i.e. first-order approximate Lie- 
Bticklund generators for (I), we can construct approximate solutions for (1). Lie-B&klund 
generators for system (3) exist only in the onespace dimensional case with a = 0 and 
f(u0) = U;. Such a Lie-Backlund generator is given by 

Note that a hierarchy of Lie-Bticklurid generators can be constmcted from the recursion 
operator Buler and Steeb 1992). From the linear combination of the Lie-Backlund generator 
and time translation, a first-order approximate solution U = uo +al for (1) follows, where 
uo and u1 are given by 

uo = - exp(-E1(Elxo +. xl)) f EZX, + C3 E4 

E: 

HereEl, ..., &ER. 

5. On the method of Baikov et a1 (1989) 

Finally, we demonshate that the approximate symmetry approach of Baikov et al (1989) is 
not effective for constructing solutions for equation (1). In this approach a first approximate 
symmehy is represented in the form 

The invariance of a partial differential equation with parameter E is then considered 
whereupon the determining equations for the infinitesimal functions cj9  81, q3 i j  are obtained 
by equating to zero the coefficients of zero and the first power of E. For equation (l), with 
the function f given by 
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(CW # 0, n # 0, n # l ) ,  the infinitesimal functions in (37) are as follows 

where cij, dj, & j ,  4,  and 6 k  (i. j = 0, . . .3, k = 1.2) are arbitrary real constants. Let us 
consider the scaling symmetries 

2 a  a a a a D = 2x0- + X I  - + x2- + x3 - + - 
axo ax, ax2 ax3 1 --n au  

U- 

i.e. cw = 1,cij = O , b k  = O  (i # j = 1,. . . , 3 ,  k = 1,2), and 

I a D = EU- 
au 

i.e. cij = 0, bl = 1,  bz = 0 (i. j = 0,. . . ,3). By solving the Lagrange system for the 
combination D + 5 we obtain the symmetry ansatz 

Equation ( l ) ,  together with function (38), then reduces to 

From (39) it is clear that solutions of 9 in terms of mi,  02 and q can only be constructed 
if E = 0. 
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